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The generation of prosthetic implant wear after total joint
arthroplasty is recognized as the major initiating event in
development of periprosthetic osteolysis and aseptic loosen-
ing, the leading complication of this otherwise successful sur-
gical procedure. We review current concepts of how wear
debris causes osteolysis, and report ideas for prevention and
treatment. Wear debris primarily targets macrophages and
osteoclast precursor cells, although osteoblasts, fibroblasts,
and lymphocytes also may be involved. Molecular responses
include activation of MAP kinase pathways, transcription
factors (including NF�B), and suppressors of cytokine sig-
naling. This results in up-regulation of proinflammatory sig-
naling and inhibition of the protective actions of antiosteo-
clastogenic cytokines such as interferon gamma. Strategies to
reduce osteolysis by choosing bearing surface materials with
reduced wear properties should be balanced by awareness
that reducing particle size may increase biologic activity.
There are no approved treatments for osteolysis despite the
promise of therapeutic agents against proinflammatory
mediators (such as tumor necrosis factor) and osteoclasts
(bisphosphonates and molecules blocking receptor activator
of NFkappaB ligand [RANKL] signaling) shown in animal
models. Considerable efforts are underway to develop such
therapies, to identify novel targets for therapeutic interven-
tion, and to develop effective outcome measures.

Periprosthetic osteolysis is the leading complication of a
total joint arthroplasty, a surgical procedure so successful
that more than 1 million are performed each year.46 How-

ever, periprosthetic osteolysis and subsequent aseptic loos-
ening ultimately develop in approximately 20% of pa-
tients,2 and in younger patients failure rates of 13% for the
femoral component and 34% for the acetabular component
have been reported.59 Prosthetic wear is thought to play a
central role in the initiation and development of osteolysis.
Higher wear rates are seen in patients with osteolysis com-
pared with control subjects who show no osteolysis.28,142

An enormous amount of wear particles are associated with
the periprosthetic interfacial membrane removed during re-
vision surgery.51,73,105 Particulate debris induced osteolysis
in various animal models76,77,106,111,137,146,152 and inflam-
matory responses in cultured macrophages.9,55,70,76,82,145

These findings suggest wear debris is one of the most
important underlying causes of periprosthetic osteolysis.
Involvement of other potential contributors to osteolysis
and aseptic loosening, such as fluid pressure,4,5,122 are
beyond the scope of this review, and are not discussed.

Wear debris may be generated from various prosthesis
components (eg, polyethylene, metal, and ceramic) and
bone cement.102 The choice of prosthesis and bearing sur-
face profoundly affects the composition, size, and shape of
generated particles. Each influences cellular responses,
therefore implant design may have a substantial impact on
the potential for development of osteolysis. Because oste-
olysis is a progressive disease, clinical results with newer
implant designs and bearing surfaces have not been fully
determined. This is of special interest for younger patients
in whom prostheses ideally would function for 50 years or
more.

We summarize the current knowledge regarding how
wear debris participates in the development of osteolysis.
We consider the various possible cellular targets of par-
ticulate wear debris, and the molecular consequences of
these cell-particle interactions. We emphasize two novel
features, namely the critical importance of reevaluating the
proposed role of proinflammatory cytokine signaling in
osteolysis and the unparalleled value of magnetic reso-
nance imaging (MRI) in the detection and characterization
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of osteolysis. We also consider how research in the cellu-
lar and molecular pathogenesis of osteolysis is used to
identify molecular candidates for treating patients.

MATERIALS AND METHODS

We performed Medline searches for the terms “periprosthetic
osteolysis” and “wear debris” to identify relevant literature.
These searches identified 317 and 416 references, respectively.
Articles addressing wear debris in osteolysis of the hip, animal
models of osteolysis, and in vitro models of particle action were
selected for further review. We then manually reviewed the ref-
erences listed in selected articles.

The Cell Biology of Osteolysis
Multiple cell types have been implicated in the development of
periprosthetic osteolysis in response to wear debris, suggestive
of a complex network of cellular pathogenesis (Fig 1). We con-
sider these various cell types individually, but interplay between
them ultimately determines the cell biologic response to wear
debris.

Macrophages
There is considerable evidence the most important cellular target
of wear debris is the macrophage. The interfacial membrane of
patients with osteolysis shows extensive macrophage infiltra-
tion,143 and the presence of particles in these cells suggests ac-

tive phagocytosis.105 In vitro, cultured macrophage lineage cells
and cell lines can recapitulate this phagocytosis of wear par-
ticles,9,82,147,149 which is accompanied by the induction of pro-
inflammatory mediators such as prostaglandin E2 (PGE2), tumor
necrosis factor alpha (TNF-�), interleukin-1 beta (IL-1�), and
the pleitropic cytokine, IL-6.9,55,70,76,82,145 The specific nature of
this response depends on numerous parameters including the
composition,47,109,113 size,43,149 shape,151 volume, and surface
area113 of the particulate debris. Expression and secretion
of matrix metalloproteinases also are elevated in macrophages
exposed to wear debris in vitro.80 Elevated levels of these and
other proteases have been detected in periprosthetic tissues
from patients with osteolysis,60,125 suggesting elevated extracel-
lular matrix levels of proteases could contribute to tissue de-
struction.

Animal models of osteolysis support a role for macrophages
in response to particulate wear debris. For example, implantation
of polyethylene in rabbit tibiae induced a foreign-body giant-cell
reaction,39 and tissue surrounding loose rabbit tibial prostheses
generated elevated levels of PGE2 compared with the tissue
around stable prostheses.38 Likewise, periprosthetic cells from a
canine osteolysis model produced elevated levels of proinflam-
matory mediators, including PGE2 and IL-1.118 Rat models of
osteolysis using particulate polymethylmethacrylate (PMMA) or
ceramic powder introduced into an air pouch,35,79 or polyethyl-
ene particles together with a tibial polyethylene implant,77 also
resulted in inflammatory reactions. In mice, implantation of
metal, polyethylene, and PMMA bone cement particulate debris

Fig 1. Osteoclast precursor cells (OCP) recruited to
the periprosthetic tissues differentiate into functional
osteoclasts (OC), which resorb bone by generation of
a resorption pit into which enzymes such as Cathep-
sin K, tartrate-resistant acid phosphatase (TRAP)
and carbonic anhydrase II (CAII) are secreted. Os-
teoclast maturation and activation are mediated by
interaction of RANKL with the OCP receptor RANK.
Osteoprotegerin (OPG), a soluble decoy receptor for
RANKL, inhibits this pathway, as does the T lympho-
cyte cytokine, interferon gamma (IFN). Positive (+)
and negative (−) effects of wear particles on key as-
pects of this complex regulatory system are shown,
as are important steps where possible particles in-
volvement have yet to be established (?).
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in subcutaneously generated air pouches induced macrophage
infiltration and production of proinflammatory cytokines,146 as
did direct application of PMMA or titanium particles to the
exposed calvarium76,106 or around tibial implants.137

Results from tissue-retrieval in vitro and animal model stud-
ies forged a model for wear debris osteolysis in which the critical
initiating event is a proinflammatory response of macrophages to
particulate debris, which then leads to excessive recruitment,
generation, and activation of osteoclasts. Powerful supportive
evidence for involvement of proinflammatory cytokine signaling
in mouse models of osteolysis includes the observations that
gene therapy with the antiinflammatory cytokines IL-1Ra or vi-
ral IL-10 protects mice from the inflammatory response to poly-
ethylene particles150 and ameliorates wear debris-induced oste-
olysis of bone fragments introduced into the air pouch.152 In
addition, inhibiting TNF-� action by deletion of the genes en-
coding TNF receptors,76,108 or by treatment with etanercept, a
TNF antagonist consisting of the extracellular region of human
p75 TNF-� receptor fused to the Fc portion of human immuno-
globulin G1 (IgG1),19 reduces PMMA and titanium particle-
induced inflammation and osteolysis. The calvarial model also
has been used to show that the antiinflammatory cytokine viral
interleukin-(IL)10 can suppress titanium wear debris-induced os-
teolysis,15 and to identify a role for COX2.158

However, direct evidence for similar involvement of pro-
inflammatory cytokines in humans is far from conclusive. For
example, although some reported elevated levels of TNF-� in
periprosthetic tissues and joint synovial fluid of patients with
osteolysis,17,84,120 others found these as lower than in control
subjects or as undetectable.101,112 There is no evidence in favor
of elevated levels of TNF-� in the serum of patients with oste-
olysis.32,41,50 Measurements of TNF-� mRNA levels also are
inconclusive.48,57,121 Messenger ribonucleic acid (mRNA) has
been detected in periprosthetic tissues of patients with osteolysis,
but the suggestion that it is elevated in these tissues is compro-
mised by the use of nonquantitative methods for detection which
are poorly suited to the quantitative measurement of transcript
levels.48,57,121 Immunohistochemistry and in situ hybridization
approaches tend to support the presence of elevated levels of
TNF-�-expressing cells in periprosthetic tissues from patients
with osteolysis.40,120,148 These techniques are semiquantitative at
best and cannot be reliably be translated into quantitative mea-
surements of the levels of TNF-� protein and mRNA in tissues.
The data for TNF-� expression in patients with osteolysis are
inconclusive. One possibility consistent with the importance of
TNF in the murine model of osteolysis is that human TNF is
involved in the early stages of pathogenesis, but not in the end
stages of disease progression. Careful resolution of this issue is
important to better understand osteolysis and loosening and for
the rational design and choice of treatments. A pilot study failed
to detect any beneficial effects of TNF blockade with etanercept
on progression of osteolysis in patients with established disease,
although this study was not powered to meaningfully evaluate
drug efficacy.107 Approximately 166 patients were required for a
suitably powered trial.107 It might be prudent to carefully revisit
the measurement of TNF levels in such patients before starting
such a trial.

Osteoclasts
Osteoclasts (OCs) are multinucleated cells derived from circulating
osteoclast precursor cells (OCPs) of the monocyte/macrophage
lineage, and represent the only cell type capable of bone resorp-
tion.13 When considering the causes of excessive bone resorption
in patients with osteolysis, it is important to consider recruitment
of OCPs from the blood and generation of functional OCs from
these OCPs in the periprosthetic space. Increased recruitment of
OCPs to the periprosthetic tissues of patients with osteolysis is
implied by the observation that pseudomembrane macrophage
lineage cells isolated from these patients display a greatly in-
creased propensity to differentiate to OCs (relative to analogous
cell populations from patients with osteoarthritis).99 Chemokines
(the principal mediators of hematopoietic cell recruitment to tis-
sues) such as MCP-1 and MIP-1-� are expressed in the peri-
prosthetic tissues of patients with osteolysis.49,81 CCR1, a recep-
tor for MIP-1-� is expressed in OCs and their precursors,155 and
MIP-1-� increases OC motility. Another chemokine, IL-8, has
also been implicated in aseptic loosening.57,65,112,127 Expression
of chemokines in cultured macrophages and fibroblasts (which
are also abundant in periprosthetic tissues) is increased by ex-
posure to PMMA and titanium wear particles.81,154 Thus, wear
debris probably increases OCP recruitment to periprosthetic tis-
sues via activation of chemokine expression by macrophages and
fibroblasts.

The effects of wear debris on generation of functional OCs
from these OCPs in the periprosthetic space are more compli-
cated, involving direct actions of particles on OCPs and effects
secondary to perturbations in the cytokine milieu by particles
action on macrophages and other cell types in the periprosthetic
region.96,108 Direct effects include antiosteoclastogenic inter-
feron gamma signaling in OCPs being potently inhibited by ti-
tanium wear debris.96 Signaling by IL6, which also can suppress
differentiation of OCPs, is suppressed by titanium and PMMA
bone cement.96

Investigations of indirect effects of wear debris on osteoclas-
togenesis have focused mainly on the well-known bone pro-
resorptive actions of cytokines such as TNF-� and IL1, which
have been identified as key mediators in mouse models of oste-
olysis.19,30,152 Overexpression of TNF-� is sufficient to induce
calvarial osteolysis even in the absence of added particles, em-
phasizing its proresorptive characteristics in mice.108 However,
it is unclear whether these inflammatory cytokines are elevated
in end-stage osteolysis, suggesting other mechanisms may be at
work. The most important candidates are RANKL, receptor ac-
tivator of NFkB (RANK), and osteoprotegerin (OPG). Receptor
activator of NFkB ligand is the key cytokine regulator of osteo-
clast generation and activation. Receptor activator of NFkB li-
gand binds to RANK expressed on the surface of OCs and
OCPs,54 and is necessary for the differentiation of OCPs to ma-
ture, functional OCs in the presence of the survival factor
MCSF.83,93 Osteoprotegerin is a naturally occurring decoy re-
ceptor for RANKL functions to down-regulate osteoclastogen-
esis by binding RANKL, thus preventing its interaction with
RANK.115 The RANKL/OPG ratio is a critical parameter in the
regulation of bone resorption, and has been correlated with vari-
ous bone disorders.52 Although RANKL/OPG ratios have yet to
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be correlated with osteolysis, there are reasons to suspect bone
loss may be mediated by elevated RANKL/OPG. First, some
reports have identified elevated RANKL expression in the inter-
facial membranes from patients with osteolysis, with expression
localized to the abundant macrophages, giant cells, and fibro-
blasts in these tissues.34,48,53,72,94 Because macrophage lineage
cells generally are thought not to express RANKL under normal
conditions, expression of RANKL in such cells presumably re-
flects up-regulation by wear debris. Second, RANKL blockade
with OPG36,128 or RANK:Fc (a RANKL antagonist consisting of
the extracellular region of RANK fused to the Fc portion of
human IgG1),20 or by using mice genetically deficient in
RANK20 prevented wear debris-induced osteolysis in the murine
calvarial model. Third, metallic and polyethylene wear debris
can increase the RANKL/OPG ratio in murine calvarial tis-
sues,74 and expression of RANKL by cultured osteoblasts88 and
fibroblasts.138 Titanium-treated fibroblasts, and also fibroblasts
isolated from arthroplasty membranes of patients with osteolysis
(which presumably had been exposed to wear debris in vivo),
can support differentiation of OCPs to OCs.100,138

These observations suggest particulate debris may induce os-
teoclast generation and activation by modulation of the
RANKL/OPG ratio. This most likely involves direct effects of
particles on cells in the periprosthetic tissue and indirect effects
mediated by particle-mediated perturbations of cytokines, which
can modulate RANKL/OPG ratios.52

Osteoblasts
Under normal conditions, resorption and formation balance each
other to allow bone remodeling and homeostasis. It is important
to consider whether, in addition to promoting osteoclast activity,
wear debris might also contribute to osteolysis through inhibiting
bone formation. Insufficient attention has been paid to the pos-
sible involvement in osteolysis of osteoblasts (OBs), the cell type
responsible for bone formation. Research has been limited to in
vitro models of cell-particle interactions. Polyethylene and metal
particles can be phagocytosed by OBs.68 Metallic and polymeric
particles decrease expression of collagen Types I and III by
OBs,129,130,153 and polyethylene also decreases osteoblast matrix
production.25,26 In addition, titanium has been reported to reduce
OB viability by inducing apoptosis,89 and PMMA bone cement
reduces OB proliferation.156 Different particle types can differ-
entially affect OB proliferation and activity.67 There is also evi-
dence that differentiation of OBs from mesenchymal stem cells
is down-regulated by titanium particles,135 and that titanium and
zirconium oxide induce mesenchymal stem cell apoptosis;136

suggesting wear debris might inhibit OB formation and function.
These in vitro findings require in vivo testing to delineate the
potentially critical role of osteoblasts in disease development.

Lymphocytes
Renewed interest in metal-on-metal prostheses has reinvigorated
the debate surrounding the involvement of metal hypersensitivity
in osteolysis. Despite the reduced wear of these second-
generation devices, implant failure is associated with lympho-
cytic infiltrations indicative of hypersensitivity reactions.24,144

Metal-specific lymphocyte responses can be correlated with poor

implant performance.44 T lymphocytes are key regulators of
bone homeostasis because of their ability to generate proosteo-
clastogenic (ie, RANKL) and antiosteoclastogenic (ie, interferon
gamma) cytokines during activation, and are critically involved
in the RANKL-dependent bone loss observed in inflammatory
bone erosion diseases such as rheumatoid arthritis.42,61,62 How-
ever, involvement of T cells in periprosthetic osteolysis has been
controversial. Although some earlier studies of the cellularity of
periprosthetic tissues retrieved from patients with osteolysis dur-
ing revision surgery suggest the presence of a substantial amount
of activated T cells,3,31 others discount this possibility, finding
only unactivated or low amounts of T cells.6,66 The presence of
Th1 and Th2 cytokines in the periprosthetic tissues has been
reported,3 and others report no involvement.6,66 In animal stud-
ies, mice with lymphocyte deficiencies retain the ability to form
granulomas37,58 and develop osteolysis126 in response to wear
debris, suggesting lymphocytes are not causally involved in
these processes. However, mice with lymphocyte deficiencies
fail to mount an inflammatory response to polyethylene particles
injected into the knee,103 and titanium particles induce larger
sutures in athymic mice than wild type controls when applied to
exposed calvaria.18 More studies are needed to definitively de-
fine the role of lymphocytic reactions in periprosthetic osteoly-
sis.

The Molecular Biology of Osteolysis
Little is known about the molecular signaling pathways that
underpin the perturbations in expression of factors such as cy-
tokines, chemokines, and proteases seen in the interfacial mem-
branes of patients with osteolysis. However, in vitro experiments
have started to unravel the nature of these wear debris-activated
signaling pathways, setting the stage for focused in vivo experi-
ments to identify potential novel drug targets.

The most notable transcription factor implicated in wear de-
bris action is NFkB. Mice lacking NFkB are osteopetrotic, re-
sulting from an inability to generate functional osteoclasts.33,56

Titanium and PMMA wear debris can activate NFkB in cultured
macrophages,82 OCPs,22 and the J774 murine macrophage cell
line,108 and inhibition of NFkB blocks PMMA induction of os-
teoclastogenesis in vitro22 and polyethylene induction of oste-
olysis in mice.97 Supporting in vivo evidence for a role of NFkB
in osteolysis comes from observations that deficiency of NFkB1
in mice protects against titanium-induced calvarial osteolysis.108

Other transcription factors, such as NF-IL682 and AP-1,78 be-
come activated after titanium treatment of macrophages. How-
ever, the relevance of these factors in osteolysis remains unclear.

The three major MAP kinase subgroups (p38, ERK, and
JNK) also are involved in macrophage responses to wear debris
in vitro.1,82,96 Titanium and PMMA can induce rapid activation
of these MAP kinase family members, and inhibition of MAP
kinase activation reduces the ability of these particles to induce
proinflammatory cytokine induction in cultured OCPs,96 sug-
gesting MAP kinases are critical transducers of the signals ema-
nating from particle-cell interaction to the nucleus. p38 MAP
kinase (but neither ERK nor JNK MAP kinases) activity is also
essential for PMMA-mediated down-regulation of IL-6 signal-
ing.96 p38 inhibition protects against inflammatory bone destruc-
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tion in vivo, suggesting this might represent a valid target for
therapies.75 In addition, MAP kinases mediate the ability of
PMMA and titanium wear debris to induce expression of
SOCS3, a suppressor of antiosteoclastogenic cytokine signaling.96

Little is known about the molecular basis of wear debris
interaction with the surfaces of cells. There is evidence poly-
ethylene activates complement,27 which argues in favor of a role
for macrophage complement receptors (eg, CR3) in particle up-
take. CR3 expressing phagocytes have been detected in granu-
lomatous lesions associated with total hip arthroplasty.104 In-
volvement of CR3 in particle action also is supported by the
observation that antibodies against CR3 reduce macrophage up-
take of titanium82 and PMMA particles, and that CR3 expression
in nonphagocytic cells enhances interactions with PMMA par-
ticles.95 Scavenger receptors, such as MARCO, are involved in
opsonin-independent uptake of titanium particles by alveolar
macrophages,86 suggesting different particles may use different
surface receptors. Opsonization is not essential (although it may
be involved) in responses of human monocytes and macrophage
cell lines to titanium.71,87 In addition, the scavenger receptor
antagonist polyinosinic acid reduces phagocytosis of titanium
particles by macrophages, and heterologous expression of scav-
enger receptor enhances the ability of cells to bind titanium
particles.95

Current and Future Treatment Possibilities
Classification of osteolysis as an inflammatory bone erosion dis-
ease has resulted in two main treatment approaches; antiinflam-
matory agents and suppressors of bone resorption. Antiinflam-
matory agents have proved effective for treatment of osteolysis
in animal models. Etanercept19 and pentoxifylline,106 TNF an-
tagonists that operate as a decoy receptor and an inhibitor of
secretion, respectively, diminish particle-induced osteolysis in
the murine calvarial model, as does the COX2 inhibitor, cele-
coxib.158 However, despite these encouraging animal studies, it
is not known how well these antiinflammatory agents may per-
form in the prevention or treatment of human osteolysis. Orally
administered pentoxifylline reduces the inflammatory response
of isolated monocytes to wear debris in healthy subjects,90 but
has not been tested in patients with osteolysis. A small trial of
etanercept107 used in patients with osteolysis proved inconclu-
sive. Because it remains uncertain whether TNF-� and other
proinflammatory cytokines are elevated in end-stage osteolysis
periprosthetic tissues, they may not be useful for treating patients
with established disease.

Bisphosphonates induce OC apoptosis by blocking the meva-
lonate pathway of isoprenoid biosynthesis, and have been widely
used as antiresorptive agents (eg, treating osteoporosis).11 Given
that excessive osteoclast activity represents the cellular end point
of osteolysis, bisphosphonates have been considered as possible
therapeutic agents. Animal model studies have been encourag-
ing. Alendronate inhibited wear debris-induced osteolysis in a rat
loaded tibial implant model of osteolysis77 and in a similar ca-
nine model.111 It was also effective in preventing osteolysis in
the murine calvarial model.106 A single dose of zoledronic acid
administered directly after surgery also suppressed particle-
induced osteolysis in mouse calvaria.133 Because statins, as

HMGCoA reductase inhibitors, also target the mevalonate path-
way, they have been considered as possible drugs for osteolysis.
Simvastatin prevents wear debris-induced osteolysis in the mu-
rine calvarial model.132 However, despite promising results in
animal models, there is no clinical evidence supporting the ef-
fectiveness of bisphosphonates in treating patients with osteoly-
sis. High local levels of TNF may protect OCs from bisphos-
phonate-induced apoptosis,157 which may be of relevance to pos-
sible use of these drugs in osteolysis. Despite these findings,
there is evidence bisphosphonate treatment shortly after total hip
arthroplasty may transiently decrease postoperative bone loss,
possibly contributing to the prevention or delay of osteolysis. For
example, one dose of pamidronate reduced postoperative bone
loss at 6 months.141 However, this effect was lost by 2 years
postoperatively. It is not known whether additional doses or oral
therapy would maintain the beneficial effects of the initial dose
of pamidronate. As summarized in a metaanalysis,8 additional
studies using clinically relevant outcome measures are needed to
definitively assess whether short-term decreases in bone loss by
bisphosphonates translate into long-term benefits after total hip
arthroplasty.

The central role of RANKL in osteoclastogenesis makes this
cytokine an attractive target for possible therapies. Osteoprote-
gerin and RANK-Fc, which reduces RANKL levels, have been
used successfully to prevent osteolysis in animal models.20,36,128

AMGN-0007, a recombinant form of OPG, was well-tolerated
and effective in clinical trials in patients with multiple myeloma
or breast cancer with bone metastases.10 In addition, rationally
designed of OPG-like peptidomimetics antagonized RANKL
signaling and bone loss in a murine model of osteoporosis,16 and
small molecule activators of OPG gene expression also inhibited
bone resorption in rodents.85 However, observations that OPG
may bind TNF-related apoptosis-inducing ligand (TRAIL) in
addition to RANKL, and thus act as a cancer cell survival fac-
tor,114 have raised questions whether OPG-based drugs may
have undesirable side effects. Clinical trials with a monoclonal
antibody against RANKL (AMG-162) showed safety and anti-
resorptive activity,7,124 but this new agent has yet to be assessed
in patients with osteolysis. Such treatments would be expected to
decrease bone loss, but not reduce inflammation (as seen in OPG
treatment of rat adjuvant arthritis).61 An alternative approach
would be combined therapy with antagonists against RANKL
and proinflammatory mediators. Such an approach proved suc-
cessful in an arthritis model.160 Because RANK signaling is
transduced via NFkB, antagonists against this transcription fac-
tor may be effective treatments for osteolysis. Direct inhibition
of NFkB with the NEMO-binding domain (NBD) peptide is
reported to prevent bone loss in patients with inflammatory bone
erosion.23 In addition, inhibition of NFkB with the macrolide
antibiotic erythromycin blocks osteolysis in the murine air pouch
model.98 However, because persistent inhibition of NFkB could
result in immune deficiency or cell death, such treatments should
be approached with caution.

Inhibitors of mature OC function are another possible class of
therapeutic agents yet to be evaluated in patients with osteolysis.
As more becomes known of the molecular details of osteoclast
biology and particle action, additional targets for drug design
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should become available. For instance, there are inhibitors
for cathepsin K (an OC-specific protease),12,64 the osteoclast
ATPase proton pump,131 vitronectin receptor,45,63 and src
tyrosine kinase,110 all of which are required for resorption. All
sustained, systemic therapies targeting OCs have a common
concern—perturbation of normal bone remodeling activity
through relentless OC repression may adversely affect the me-
chanical quality of bone and fracture healing. This concern ap-
plies to all the putative osteolysis therapies as none involve local
administration to the osteolysis site. However, oral administra-
tion of alendronate for osteoporosis in postmenopausal women
for more than 10 years has been reported to result in no loss of
benefit,11 suggesting such OC inhibitors remain viable therapies
for localized periprosthetic osteolysis.

Perhaps the biggest impediment to the development of treat-
ment strategies for osteolysis is the lack of an accepted outcome
measure. Conventional imaging techniques used to localize,
quantify, and monitor the progression of particle disease face
unique challenges. As bone loss surrounding arthroplasties is
often asymptomatic, clinicians frequently recommend routine
radiographic imaging. However, joint anatomy may be quite
complex (particularly in the pelvis), rendering difficulty in ob-
taining accurate, reproducible information regarding three-
dimensional segments of bone loss from two-dimensional radio-
graphs. Modified oblique views have been reported to increase
the recognition of osteolysis.117,159 Radiographs can fail to detect
lesions or grossly underestimate the extent of segmental bone

loss.14,123 There is also poor interobserver reliability in charac-
terizing pelvic bone loss on standardized radiographs.29 Al-
though CT with protocol modification can more precisely quan-
tify osteolysis,21,69,92 techniques that result in diminished beam-
hardening artifact require increased radiation doses and
radiographic exposure.140 Although more accurate than conven-
tional radiographs, CT presents a cumulative radiation burden to
the patient, particularly when serial examinations may be nec-
essary before revision.

Given its lack of ionizing radiation, multiplanar capabilities,
and superior soft tissue contrast, MRI would intuitively be well
suited in assessing this process. Traditional techniques are lim-
ited by the presence of the artifact generated by the metallic
components. The intensity of the artifact generated by the ar-
throplasty is a function of several factors, including the degree of
relative ferromagnetism of the metallic components, their orien-
tation relative to the static magnetic field, and their geometry.
The clinical utility and safety of MRI of an arthroplasty has been
shown in clinical series using minor pulse sequence modifica-
tions of commercially available software (Fig 2).116,119 Magnetic
resonance imaging is superior in locating and quantifying areas
of periacetabular bone loss compared with conventional radio-
graphs.91 Magnetic resonance imaging may disclose the burden
of intracapsular synovial disease that precedes osteoclastic bone
resorption (Fig 3).91 A clinical study showed these techniques
are safe with appropriate imaging protocol modifications and
consistent observation of the soft tissue envelope (including in-
tracapsular synovial deposits).91

Fig 2. A coronal fast-spin echo MR image through the poste-
rior column of the right hip in a 52-year-old man 17 years after
primary arthroplasty shows severe periacetabular osteolysis,
manifested as intermediate signal intensity material (arrows)
replacing the normally high signal intensity of the fat in the
marrow. There also is involvement of the proximal femur (ar-
rowhead).

Fig 3. A coronal fast-spin echo MR image of the right hip in an
81-year-old patient 16 years after arthroplasty shows interme-
diate signal intensity debris (arrows) in the absence of discern-
ible osteolysis, consistent with a moderate intracapsular bur-
den of particle disease.
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These techniques must be validated before being applicable
to a prospective study cohort. Inspecting the joint at the time of
revision surgery is often an imperfect standard for judging the
accuracy of imaging in determining the location and total vol-
ume of bone loss. In a cadaveric pelvic model to compare the
ability of optimized radiographs and MRI to locate and quantify
simulated osteolytic lesions, MRI was 95% sensitive with a
specificity of 98% and an accuracy of 96%, and lesion detection
was not dependent on lesion location.139

In a comparative nonclinical model of modified MRI, opti-
mized plain radiographs and optimized CT, MRI was the most
sensitive technique in detecting osteolytic lesions, with a sensi-
tivity of 95%, compared with 75% for CT and 52% for radio-
graphs.134 Magnetic resonance imaging was the most effective
tool for detecting small periacetabular osteolytic lesions less than
3 cm.134 These newly available MRI techniques provide an ef-
fective means to prospectively assess the synovial and intra-
osseous burden of particle disease, thus serving as a means by
which to noninvasively monitor disease progression. This im-
proved sensitivity in the detection of osteolysis will facilitate
preoperative planning for revision arthroplasty, and provide a
critical outcome measure for serial evaluation of clinical trials of
treatments.

DISCUSSION

Despite the prevalence of periprosthetic osteolysis, which
eventually afflicts a sizeable proportion of patients who
have total joint replacements, there are no approved medi-
cal therapies for this condition. This relates primarily to a
lack of full understanding of the molecular and cellular
pathogenesis of end-stage osteolysis. Elucidation of the
responsible molecular and cellular pathways is critical to
the rational identification of treatment strategies for the
devastating disease. We have summarized progress on
these questions and identified areas where information is
lacking.

One of the most important problems is relating the ex-
tensive body of literature on wear debris actions in vitro
and animal models of osteolysis to the realities of the
human disease. For example, despite the prominent in-
volvement of proinflammatory cytokines in models of os-
teolysis, the evidence that these are similarly pivotal in
patients with end-stage osteolysis has not been firmly es-
tablished. More extensive patient-oriented molecular and
cellular pathogenesis studies are essential to resolve such
discrepancies. Rapid advances have been seen in the de-
velopment of therapeutic agents targeting osteoclasts.
Meaningful clinical trials of such therapies are needed in
patients with osteolysis. Critical to the success of such
trials will be additional refinement of outcome measures
for evaluation of disease progression. Recent advances in
adaptation of imaging techniques such as MRI and CT
have shown promise in more accurate monitoring of os-

teolytic lesions. Equally valuable would be the identifica-
tion of serum markers for disease progression.
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